Category: Engineering

Heart Flow

Using data from a standard CT scan, the non-invasive HeartFlow Analysis creates a personalized 3D model of the coronary arteries and analyzes the impact that blockages have on blood flow. See the website: http://www.heartflow.com/

Starfish Medical – VivitroLabs – ProtomedLabs


Ece Tutsak – Banu Köse – Vincent Garitey

Mimics Innovation Course 2017

Materialise provided a Mimics Innovation Course on Soft Tissue.

This training was very informative and well-presented with all soft tissue samples, text book and datasets.

I used 3-Matic for the first time, and got confidence about many things about design and meshing. We could also discuss our own projects and could ask possible options of Mimics Innovation Suite.

Learning about the news about scripting possibilities to automate the workflow, and ADam (Materialise Anatomical Data Mining) for shape optimisation was encouraging.

Thank you for sharing your knowledge with us, Karen and Inés.

Thank you for the great help of Job.

Vivitro Pulse Duplicator Training in Protomed Labs

http://www.protomedlabs.com

It was really a great experience at  Protomed Labs in Aix-Marseille University. I really enjoyed learning about hydrodynamic testing requirements, Vivitro Pulse Duplicator, its calibration, flow testing, heart valve testing, and at the same time  practicing.

Thanks to Prof. Kerem Pekkan for suggesting this training for Ece Tutsak and me.

I would like to express my sincere thanks and gratitude to  Karim Mouneimne and Vincent Garitey for all the kind care they took, regarding the training, sharing their expertise to us, the  detail notes, all the answers whenever required etc. in Protomed Labs.

I hopefully will be able to implement it further into my field.  This got me inspired and ready to go!

Advances in Cardiac Imaging

While cardiac magnetic resonance imaging (MRI) is considered an excellent imaging modality for the heart, offering highly detailed soft tissue anatomical imaging as well as functional assessments, it only makes up about 5 percent of all MRI scans in the United States. This is in part due to the expense, time involved and the complexity in completing these scans and reading them. There were two software innovations that may help increase the use of cardiac MRI by reducing its complexity.

To read the entire article, go to www.dicardiology.com/article/advances-cardiac-imaging-rsna-2016.

At RSNA 2015, Arterys introduced a package of advanced cardiac MRI visualization and quantification software that automates a lot of the processes involved. It also uses a cloud-based platform that allows access to a large amount of computing power needed to process cardiac cine functional data in real time. The software includes 4-D Flow and 2-D phase contrast workflows, and cardiac function measurements. The software is the first clinically available cardiovascular solution that delivers cloud-based, real-time processing of images with resolutions previously unattainable. The company gained U.S. Food and Drug Administration (FDA) 510(k) clearance in November 2016 and showed several new advancements at RSNA 2016. Arterys is partnering with GE Healthcare to introduce the software on the Signa MRI systems under the GE name of ViosWorks. However, Arterys said it has aspirations to be a software OEM for several MRI vendors. An additional introduction was Arterys? regurgitation evaluation software that offers several ways to view regurgitation, which has traditionally been difficult to assess on MRI. One view visualizes blood flow velocities with arrows to show direction of flow and a color code to show the speed of the flow. It presents very similar to cardiac ultrasound color flow Doppler. The software can help identify regurgitation jets, vortices and sheer wall stresses, and offers automated quantification. In cardiovascular research, sheer stress evaluation has become a big area of interest because it is believed these stresses may play a role in the formation of atherosclerosis, the degradation of heart valve function, and possibly play a role in the progression of heart failure. So, Arterys also introduced a research sheer stress analysis software package.

- DAVE FORNELL

To read the entire article, go to www.dicardiology.com/article/advances-cardiac-imaging-rsna-2016.

İTÜ

I could have a chance to give a seminar about my research field at Istanbul Technical University.

Thanks to the faculty in The School of Physics Engineering for their sociable audience and fruitful discussions.

Special thanks to Özgür Akarsu and Sevtap Yildiz Özbek for the generous invitation and their kind hospitality.


Link

Windkessel plus colours ;)

I know why I’d rather CFD. Because it has colours. Windkessel analogy has not.

Link

ICPT – GEFIK 2016

I had chance to present my works to authors and answer the questions of young curious physicisits at GEFIK2016 in Ege University. Discussing about medical physics and classical mechanics with physicists was a peerless experience.

3D Printed Aorta

A pediatric aorta model reconstructed from the 3D CT images.

‘Go with the flow’ by Victoria Stoll

The British Heart Foundation (BHF) announced the winners of its annual ?Reflections of Research? image competition, reflecting the charity?s research into heart and circulatory disease.
The winning image ? titled ?Go with the flow,? by Victoria Stoll, a BHF-funded researcher at the University of Oxford ? captures the blood flowing within an adult heart frozen in time. Blood flows within the main pumping chambers (ventricles) of the heart and the vessels leaving the heart. The blue flow is blood that lacks oxygen and is travelling to the lungs. The red flow is blood that has been through the lungs and received oxygen and is now ready to be pumped around the body.
Stoll is using this type of imaging, four-dimensional cardiac magnetic resonance imaging (MRI), to look at the blood flow in four dimensions within the hearts of people with heart failure, whose hearts are not pumping effectively. She has already found that in people with severe heart failure the blood flows around the heart in a more disordered and disrupted pattern.

More

ISCOMS – Faculty of Medical Sciences- Groningen University

Interactive Surgical Operation

‘Lauded’


Cardiovascular

Anatomical Modeling & 3D Printing Meeting with 4C Medikal

PRINT THYSELF

This sort of procedure is becoming more and more common among doctors and medical researchers. Almost every day, I receive an e-mail from my hospital?s press office describing how yet another colleague is using a 3-D printer to create an intricately realistic surgical model?of a particular patient?s mitral valve, or finger, or optic nerve?to practice on before the actual operation. Surgeons are implanting 3-D-printed stents, prosthetics, and replacement segments of human skull. The exponents of 3-D printing contend that the technology is making manufacturing more democratic; the things we are choosing to print are becoming ever more personal and intimate. This appears to be even more true in medicine: increasingly, what we are printing is ourselves.

Source: Newyorker

Measure Your Blood Flow

The inventors of the new ?epidermal electronic? sensor system say it is ready for use in a clinical setting, specifically for monitoring skin health, for example in patients who have recently had skin grafts. They say down the road it may also be possible to use it inside the body. In a recent demonstration, the researchers showed that the device can record accurate data from human subjects about the flow of blood in larger vessels, specifically veins in the forearm, as well as in the network of tiny vessels near the surface of the skin.

Compared with state-of-the-art methods for noninvasively measuring blood flow, which rely on optical systems or ultrasound technology, the new sensor is much simpler and less expensive, says John Rogers, one of the inventors and a professor of materials science and engineering at the University of Illinois at Urbana-Champaign. More importantly, he says, it is much less sensitive to motion thanks to the way it ?intimately laminates? to the skin.

Characteristics of the blood flow in any given tissue are a good indicator of that tissue?s health. Some conditions, like infection and inflammation, can lead to an increase in local blood flow, whereas others, like atherosclerosis, heart failure, and diabetes, can cause a decrease. If doctors could precisely and even continuously monitor this flow, they could better tailor care to individual patients and conditions.

Source

Hemodyn

Hemodyn, the first cardiovascular mechanics and surgical planning company of Turkey is taking place in StartUp Istanbul 2015.

Hemodyn is assisting the surgeons in the diagnosis and surgery planning of the congenital heart diseases in The Incubation Office of Koc University.

Hemodyn Team has always been an invariable place for my research vision. I want to thank to Kerem Pekkan, Şenol Pişkin and Volkan Tuncay by means of this event.

Link

3D Printing for Pediatric Cardiothoracic Surgeons

Having worked in product development for the past few years, Dr. Enrique Garcia had seen what 3D printers were capable of and began investigating the possibilities for creating models for pediatric cardiologists to use before an operation. She began by asking surgeons from around the country what they thought of the idea. To say that their response was overwhelmingly positive is an understatement. The value of this idea was immediately apparent.

?Pediatric heart surgery is the hardest thing that I can imagine a person doing. A surgeon doesn?t know what he?s going to see until he opens a child?s chest. Every heart is different and every cardiopathy is different,? said Garcia. ?A baby?s heart is the size of a walnut, and surgeons need to go in and move around structures that are as small and thin as a human hair; and they?re doing it with their own two hands. And all of this is occurring against a ticking clock.?
*
?Having something in your hands, and being able to turn it any way you want, and to be able to cut and open it up and see the inside; and to be able to physically hold it, to feel it, is something that can?t be replicated in a computer.?

Read More in the source.

Computing in Cardiology

The 2015 Computing in Cardiology Conference will be held in the Nice, France, the heart of the French
Riviera, from September 6-9. The meeting is affiliated with the University of Nice-Sophia Antipolis and
CNRS.

Here is the scientific program: http://www.cinc2015.org/sites/default/files/fichiers/2015CinCProgramDetails-2.pdf

Click here for final manuscript submissions.

Minerva Medica

2015 North American Society for Cardiovascular Imaging (NASCI) Conference

The North American Society for Cardiovascular Imaging (NASCI) welcomes the submission of original abstracts for its 43rd Annual Meeting, September 26 ? September 29, 2015 at the Westin, San Diego via its online system. The NASCI 2015 Annual Meeting will showcase Oral Presentations, AHA Young Investigator Presentations (AHA Oral), and Educational Exhibits (Poster).

Scientific presentations are completed hypothesis-driven research with a comprehensive report; a work-in-progress report of ongoing research of emerging ideas and techniques and containing initial yet defined results; or a brief pertinent report of a particular new aspect or understanding of clinical radiology.

Young Investigator
The American Heart Association Council on Cardiovascular Radiology and Intervention (CVRI) will again sponsor the NASCI-AHA Young Investigator Awards.

Eligibility: All residents, postdoctoral students, medical students, and fellows are eligible.

Selection: Eight finalists will be selected and asked to orally present their papers at the Scientific Sessions. ONLY FIRST AUTHORS MAY PRESENT FOR YOUNG INVESTIGATOR SESSIONS.

Awards: All eight finalists receive two nights’ hotel accommodations at the Westin and will have the abstract published in full in the iJCVI. Travel and meeting registration costs are covered by the finalist. The three top presentations will receive an additional cash award. The 1st place presentation will receive an invitation to publish their work in the iJCVI with an expedited review by the Senior Associate Editor (although standard peer-review criteria for acceptance will apply). If accepted, this article will be noted as NASCI’s 1st place article in an Editorial written by the Senior Associate Editor.

NOTE: Those who submit as an AHA, but are not chosen as a finalist, will still be eligible to present their work as a non-AHA talk or poster.

Application details:

The presenter must be the first author of an accepted abstract.

Only Young Investigator submissions accepted for oral presentation will be considered for the American Heart Association – CVRI Young Investigator Awards.

The applicant must be a member of NASCI and CVRI.

A signed confirmation from the Program Director of the applicant?s In-Training status should be sent to the Society (FAX: 703-716-4487 or EMAIL: info@nasci.org) The applicant must apply before the MAY 19, 2015, 11:59 pm abstract deadline.
No more than two applicants from the same institution may be selected as a Young Investigator finalist. There is no limit to the number that may apply.

When submitting the abstract, please select “Yes” for the Young Investigator Awards/Travel Stipends Question.
The American Heart Association requires all applicants be an AHA CVRI (Cardiovascular Radiology and Intervention) Council member. If the applicant is not currently a member of the CVRI council, the CVRI Council will then pay the membership fee.

Submit
About NASCI