Category: Biophysics

Virtual Physiological Human Conference 2018 / Zaragoza

Conference Web Link

8th World Congress of Biomechanics / Pekkan Lab

More

3D-Printed Artificial Heart Test / #ETH Zurich

Trando Med

Trando Med will attend MEDICA 2017 in the Dusseldorf Germany from 13-16 November 2017. The booth is Hall 13 Booth F 9-05

Carol Malnati

“- I wanted to be someone that encouraged young women to get involved in math, science, and engineering.”

Today, she’s doing just that.

As a product development engineer in the Medtronic cardiovascular division, Carol has been doing what she loves for more than 25 years. She provided critical technical expertise for the company’s first implantable cardioverter defibrillator and continues to collaborate with engineering teams and physicians to find new ways of doing things.

But on top of her day job, she has taken on another commitment – overseeing the Women in Science and Engineering (WISE) Initiative at the company.

Beginning in the spring of 2017, Medtronic introduced another opportunity that taps into an often overlooked talent pool.  Careers 2.0 is a “returnship” program designed to provide paid internships for female engineers looking to get back into STEM-related careers. Research suggests close to 25 percent of women in engineering careers leave the industry by age 30, citing work culture or family commitments.

“This is a way to bring these talented women back into our technical and managerial ranks,” says Carol. “We are very excited about providing this amazing pool of talent an opportunity at Medtronic.”

“Overall, I want to inspire women,” says Carol. “Whatever your passion is; clean air, fighting hunger, or improving healthcare. Behind the biggest challenges of humanity, there’s an engineer working to find a solution.”

Source

ISCOMS 2017 at University of Groningen

Many thanks to University Medical Center Groningen for the oral sessions and workshops of 3D Lab, LVAD treatment, Dissection of Brain, CABG treatment, IV Injections and Nuclear Medicine.

Starfish Medical – VivitroLabs – ProtomedLabs


Ece Tutsak (Left) – Banu Köse(Middle) – Vincent Garitey(Right)

Laser Doppler Velocimetry

Laser Doppler velocimetry is used in hemodynamics research as a technique to partially quantify blood flow in human tissues such as skin. Within the clinical environment, the technology is often referred to as laser Doppler flowmetry (LDF). The beam from a low-power laser (usually a laser diode) penetrates the skin sufficiently to be scattered with a Doppler shift by the red blood cells and return to be concentrated on a detector. These measurements are useful to monitor the effect of exercise, drug treatments, environmental, or physical manipulations on targeted micro-sized vascular areas.

The laser Doppler vibrometer is being used in clinical otology for the measurement of tympanic membrane (eardrum), malleus (hammer), and prosthesis head displacement in response to sound inputs of 80- to 100-dB sound-pressure level. It also has potential use in the operating room to perform measurements of prosthesis and stapes (stirrup) displacement.

20. National Liquid State Physics Symposium 16 December 2016

20. National Symposium on  Liquid State Physics was held in Piri Reis University.

The symposium was obtaining various studies about liquids as water and climate change, simulating strait systems, oceans, spin glass phases, liquid crystals, serum transferring,  swollen gells, GO composites, metals with  glass-like structure, super hidrophobic polistren and, biofluids {yes, this was mine ;) }.

It was an incontrovertible experience for me that i could meet new studies in the field and spend nameable times with  physics authors.

Many thanks to organizing comitee (especially to Gülşen Evingür) and Sevtap Yıldız Özbek.

The website of the symposium is here.

ICPT – GEFIK 2016

I had chance to present my works to authors and answer the questions of young curious physicisits at GEFIK2016 in Ege University. Discussing about medical physics and classical mechanics with physicists was a peerless experience.

3D Printed Aorta

A pediatric aorta model reconstructed from the 3D CT images.

‘Go with the flow’ by Victoria Stoll

The British Heart Foundation (BHF) announced the winners of its annual ?Reflections of Research? image competition, reflecting the charity?s research into heart and circulatory disease.
The winning image ? titled ?Go with the flow,? by Victoria Stoll, a BHF-funded researcher at the University of Oxford ? captures the blood flowing within an adult heart frozen in time. Blood flows within the main pumping chambers (ventricles) of the heart and the vessels leaving the heart. The blue flow is blood that lacks oxygen and is travelling to the lungs. The red flow is blood that has been through the lungs and received oxygen and is now ready to be pumped around the body.
Stoll is using this type of imaging, four-dimensional cardiac magnetic resonance imaging (MRI), to look at the blood flow in four dimensions within the hearts of people with heart failure, whose hearts are not pumping effectively. She has already found that in people with severe heart failure the blood flows around the heart in a more disordered and disrupted pattern.

More

Me in The Old Lab and The Oxygenator

PRINT THYSELF

This sort of procedure is becoming more and more common among doctors and medical researchers. Almost every day, I receive an e-mail from my hospital?s press office describing how yet another colleague is using a 3-D printer to create an intricately realistic surgical model?of a particular patient?s mitral valve, or finger, or optic nerve?to practice on before the actual operation. Surgeons are implanting 3-D-printed stents, prosthetics, and replacement segments of human skull. The exponents of 3-D printing contend that the technology is making manufacturing more democratic; the things we are choosing to print are becoming ever more personal and intimate. This appears to be even more true in medicine: increasingly, what we are printing is ourselves.

Source: Newyorker

Measure Your Blood Flow

The inventors of the new ?epidermal electronic? sensor system say it is ready for use in a clinical setting, specifically for monitoring skin health, for example in patients who have recently had skin grafts. They say down the road it may also be possible to use it inside the body. In a recent demonstration, the researchers showed that the device can record accurate data from human subjects about the flow of blood in larger vessels, specifically veins in the forearm, as well as in the network of tiny vessels near the surface of the skin.

Compared with state-of-the-art methods for noninvasively measuring blood flow, which rely on optical systems or ultrasound technology, the new sensor is much simpler and less expensive, says John Rogers, one of the inventors and a professor of materials science and engineering at the University of Illinois at Urbana-Champaign. More importantly, he says, it is much less sensitive to motion thanks to the way it ?intimately laminates? to the skin.

Characteristics of the blood flow in any given tissue are a good indicator of that tissue?s health. Some conditions, like infection and inflammation, can lead to an increase in local blood flow, whereas others, like atherosclerosis, heart failure, and diabetes, can cause a decrease. If doctors could precisely and even continuously monitor this flow, they could better tailor care to individual patients and conditions.

Source

3D Printing for Pediatric Cardiothoracic Surgeons

Having worked in product development for the past few years, Dr. Enrique Garcia had seen what 3D printers were capable of and began investigating the possibilities for creating models for pediatric cardiologists to use before an operation. She began by asking surgeons from around the country what they thought of the idea. To say that their response was overwhelmingly positive is an understatement. The value of this idea was immediately apparent.

?Pediatric heart surgery is the hardest thing that I can imagine a person doing. A surgeon doesn?t know what he?s going to see until he opens a child?s chest. Every heart is different and every cardiopathy is different,? said Garcia. ?A baby?s heart is the size of a walnut, and surgeons need to go in and move around structures that are as small and thin as a human hair; and they?re doing it with their own two hands. And all of this is occurring against a ticking clock.?
*
?Having something in your hands, and being able to turn it any way you want, and to be able to cut and open it up and see the inside; and to be able to physically hold it, to feel it, is something that can?t be replicated in a computer.?

Read More in the source.

cSound

Researchers have created software that can model internal organs in ‘extreme 4D’.
The system, dubbed cSound, is currently being used by cardiologist Bijoy Khandheria, who has been fixing broken hearts for more than three decades.

Dr Khandheria describes the images as ‘exquisite’, and says it’s like opening up someone’s chest and watching their heart beat.’

‘Traditionally, ultrasound has allowed us to see the heart but not in as much detail as we might like,’ he said.
‘We used the signal to image the heart layer by layer, almost like a butcher using a knife, and then mentally splice the layers together to see the whole picture’.
Dr Khandheria and his colleagues at Aurora St Luke’s Medical Center in Milwaukee, have recently started ‘extreme 4D’ software.
The images are so clear that it allows doctors to see how blood swirls around clots in arteries.
This can then be used to measure the severity of blood leakage around the valves and assess the damages.
‘It’s almost as if I took out the valve and started turning it with my hands,’ said Dr Khandheria.

Read more

The special session for the women in the field of cardiovascular surgery – The 64th Istanbul ESCVS

International Congress of the European Society for Cardiovascular and Endovascular Surgery (ESCVS) will be held on March 26th – 29th, 2015 in İstanbul in collaboration with International Congress of Update Cardiology and Cardiovascular Surgery.

The congress scientific program includes a session for women in cardiovascular surgery which will be held on March 28th.

Abstract Submission Deadline
December 22, 2014
…………………………………………..
Notification of Abstract Acceptance
January 2, 2015
…………………………………………..
Early Registration
until November 7, 2014

ESCVS 2015 Web Site

The Horizon for Mechanical Circulatory Support

Filmed at the 2014 STS Annual Meeting in Orlando, Florida, this roundtable discussion focuses on mechanical circulatory support. John Kern moderates the discussion with Pavan Atluri and Francis Pagani. The panelists discuss mechanical circulatory support, LVAD therapy, and heart transplantation. The discussion concludes with thoughts on the future of mechanical circulatory support.

Source:  CTS

3D Bio-Printing Project of Sabancı University

For the first time in the world, tissue structures were created by using self-supported live cells in a 3D bio-printer from medical images in the 3D Tissue and Organ Printing Project.

Sabancı University Faculty of Engineering and Natural Sciences? Manufacturing Systems Program professor Bahattin Koç and his stedents; Can Küçükgül, Saime Burçe Özler, Forough Hafezi printed artificial tissue construct at the Nanotechnology Research and Application Center (SUNUM) using self-supported live cells in a  3D bio-printing system.

The 3D Tissue and Organ Printing Project team used live human dermal fibroblast cells as bio-ink to print a part of aortic tissue.  Human blood vessel tissue consists of mainly three types of cells: fibroblast, endothelial  and smooth muscle.  Fibroblast cells are the main cells of connective tissues.  They synthesize the extracellular matrix and collagen protein needed for tissues.  Endothelium is the thin inner layer of cells of blood vessels.  Smooth muscle cells are found in inner organs such as blood vessels, esophagus and intestines.  The scientists continue their efforts to maturate the blood vessel tissue created by fibroblasts as well as endothelial and smooth muscle cells in a bioreactor.

Read More