Category: Art

Liquid State Physics in Turkey

22. Liquid State Symposium (22. Sıvı Hal Senpozyumu) took place on 7th December 2018 in Piri Reis University.
It was very proud to be together with the physicist academics I knew and admired since my undergraduate years.
I find myself lucky to see the Prof. Zehra Akdeniz that I have always admired and exemplified. I could finally meet Prof. Nihat Berker who is not only a famous physicist but also an intellectual on comparative literature readings.

Thanks to Dr. Ozan Sarıyer and Dr. Gulsen Evingur for organizing this meeting.

The symposium program link

Prof Pekkan presented biological flow researches of his lab, and I presented a sample case of a pediatric aortic blood flow comparison study which is done with the great help of Dr. Ece Salihoglu.

3D Intracardiac Models for Surgical Planning

In multidisciplinary areas, it is very important to be able to meet with the team who can work in harmony.

For his work on 3D intracardiac models on surgical planning,  Thanks to cardiovascular surgeon Dr. Okan Yildiz, we have been informed about and contributed to many pediatric cases and treatments since 2016.

3D Heart_IMAEH

Virtual Physiological Human Conference 2018 / Zaragoza

Conference Web Link

Optimizing your workflow in the Mimics Innovation Suite

The Mimics Innovation Suite (MIS) allows you to automate your workflows, potentially saving a lot of time, achieving more consistency, and reducing repetitive work and human error. That is an easy thing to say, but if you do not have much experience with scripting, we all know that it can be tough to get started. If you want to speed up your learning curve and get a head start, then this could be an interesting training for you.

Topics will include:

Basics of Optimizing your Workflow in Mimics 21 and 3-matic 13
How to write your first scripts
Introduction to Python
Hands-on training exercises for creating planning workflows (e.g. loading datasets, performing basic segmentation steps, landmarking, creating anatomical coordinate systems, designing custom implants)

CERTIFICATED ANSYS DISCOVERY LIVE ’3D Modeling, Design & Simulation in real time’

Wilhelmina Children’s Hospital / Utrecht Sessions

3 daags kindercardiologie TGA symposium

UMC Utrecht

If the human body were deduced to only the circulatory system..

Markos Kay partnered with Jan Kriwol, a Polish photographer who has an interest in optical illusion, in 2012 to begin their project, entitled Human After All. ”The biggest challenge for this project was creating an anatomical character that looked life-like and integrated with the real environment,” Kay tells Creators. “We spent a lot of time experimenting with different postures, and oftentimes we had to exaggerate the posture greatly so that it could translate visually with the deconstructed structure of the circulatory system.”

Source

Knee Anatomy – 3D Slicer

I tried to show the knee anatomy with the MRI dataset of 3D Slicer (Harvard Medical School /Brigham and Women’s Hospital / Surgical Planning Laboratory)

HORST KIECHLE

Source

Voksel 3D Surgical Planning with Simpleware

We depicted a live- surgical planning scenario with Prof. Erbil Oğuz and Kerem Girgin in Voksel 3D event. We used Simpleware for image processing, segmentation and designing.

VasCollar (Vascular Collar)

I’ve just drown vessels to my collar. It looks better now.

For More  Drawords Stuff, Click Here.

Windkessel plus colours ;)

I know why I’d rather CFD. Because it has colours. Windkessel analogy has not.

Link

Double Aortic Arch

3D Printed Aorta

A pediatric aorta model reconstructed from the 3D CT images.

‘Go with the flow’ by Victoria Stoll

The British Heart Foundation (BHF) announced the winners of its annual ?Reflections of Research? image competition, reflecting the charity?s research into heart and circulatory disease.
The winning image ? titled ?Go with the flow,? by Victoria Stoll, a BHF-funded researcher at the University of Oxford ? captures the blood flowing within an adult heart frozen in time. Blood flows within the main pumping chambers (ventricles) of the heart and the vessels leaving the heart. The blue flow is blood that lacks oxygen and is travelling to the lungs. The red flow is blood that has been through the lungs and received oxygen and is now ready to be pumped around the body.
Stoll is using this type of imaging, four-dimensional cardiac magnetic resonance imaging (MRI), to look at the blood flow in four dimensions within the hearts of people with heart failure, whose hearts are not pumping effectively. She has already found that in people with severe heart failure the blood flows around the heart in a more disordered and disrupted pattern.

More

Inside A Blue Whale’s Heart

Many thanks to Bombay Segundo.

Source : Canadian Museum of Nature

Source: @Pickover

Pulmonary

Link

Anatomical Modeling & 3D Printing Meeting with 4C Medikal

PRINT THYSELF

This sort of procedure is becoming more and more common among doctors and medical researchers. Almost every day, I receive an e-mail from my hospital?s press office describing how yet another colleague is using a 3-D printer to create an intricately realistic surgical model?of a particular patient?s mitral valve, or finger, or optic nerve?to practice on before the actual operation. Surgeons are implanting 3-D-printed stents, prosthetics, and replacement segments of human skull. The exponents of 3-D printing contend that the technology is making manufacturing more democratic; the things we are choosing to print are becoming ever more personal and intimate. This appears to be even more true in medicine: increasingly, what we are printing is ourselves.

Source: Newyorker

Gigantic Human Organs Made of Glass


Modeling human anatomy. Isn’t it fabulous?

Read more.

Many thanks Sıla Yavuz for this pleasant link.