Category: Liquid State

Institute of Physics / Challenges in Cardiocascular Flow

A joint meeting showcasing current work addressing the complex challenges in cardiac flow modeling, particularly focusing on the work of early career researchers (source).

Physics

Liquid State Physics in Turkey

22. Liquid State Symposium (22. Sıvı Hal Senpozyumu) took place on 7th December 2018 in Piri Reis University.
It was very proud to be together with the physicist academics I knew and admired since my undergraduate years.
I find myself lucky to see the Prof. Zehra Akdeniz that I have always admired and exemplified. I could finally meet Prof. Nihat Berker who is not only a famous physicist but also an intellectual on comparative literature readings.

Thanks to Dr. Ozan Sarıyer and Dr. Gulsen Evingur for organizing this meeting.

The symposium program link

Prof Pekkan presented biological flow researches of his lab, and I presented a sample case of a pediatric aortic blood flow comparison study which is done with the great help of Dr. Ece Salihoglu.

Simulate the Physiology & Understand the Pathology

.

Computational Life is a young company which has the specialty on computational flow simulations and mathematical models for the medical technology field.

The validated software Digital Avatar Platform (DAP) of Computational Life is modeling human and animal body mathematically. It is testing physiological scenarios for drugs, medical devices and treatment methods.

Circulation system, cerebrospinal fluids, transport of pharmaceutical products throughout the body can be simulated for the human and animal body with DAP. It can also be modified due to the experiment.

They replied to me with a very warm and energetic mood when I wrote them. It is great that there are enthusiastic people in the medical technology field. I am sure that I will hear more about the news of Computational Life in the next days.

Thanks to Christian Contarino, Davide Chieco and Carlo Rivis for their innovative platform which brings a great help for clinicians, researchers, and engineers.

Please check their website for more information.

.

Virtual Physiological Human Conference 2018 / Zaragoza

Conference Web Link

3D-Printed Artificial Heart Test / #ETH Zurich

Flow Testing Dynamic Systems with 3D Printed Patient-Specific Heart Models

Without the 3D printed models, we wouldn’t have been able to come up with a way to do the procedure in advance.

—C. HUIE LIN, M.D
Adult congenital and interventional cardiologist.

3D Print Bureau of Texas has partnered with physicians at Houston Methodist Hospital to create cardiac models for applications such as assessing the size and attachment site of a right atrial malignancy. Accurate physical replications of patient anatomy can even undergo testing in a dynamic system such as replicating the severity of aortic stenosis using flow testing.

3D Print Bureau of Texas also worked with Houston Methodist DeBakey Heart and Vascular Center on a complex case involving a young patient born with a wide-open leaking pulmonary valve. The patient could not take blood transfusions and have been turned down by two medical centres concerned she would not make it through surgery.

With a 3D printed model of the patient’s heart, Lin devised a plan that required very little blood loss, which resulted in a successful operation for the little patient.

Source

Starfish Medical – VivitroLabs – ProtomedLabs


Ece Tutsak (Left) – Banu Köse(Middle) – Vincent Garitey(Right)

Laser Doppler Velocimetry

Laser Doppler velocimetry is used in hemodynamics research as a technique to partially quantify blood flow in human tissues such as skin. Within the clinical environment, the technology is often referred to as laser Doppler flowmetry (LDF). The beam from a low-power laser (usually a laser diode) penetrates the skin sufficiently to be scattered with a Doppler shift by the red blood cells and return to be concentrated on a detector. These measurements are useful to monitor the effect of exercise, drug treatments, environmental, or physical manipulations on targeted micro-sized vascular areas.

The laser Doppler vibrometer is being used in clinical otology for the measurement of tympanic membrane (eardrum), malleus (hammer), and prosthesis head displacement in response to sound inputs of 80- to 100-dB sound-pressure level. It also has potential use in the operating room to perform measurements of prosthesis and stapes (stirrup) displacement.

20. National Liquid State Physics Symposium 16 December 2016

20. National Symposium on  Liquid State Physics was held in Piri Reis University.

The symposium was obtaining various studies about liquids as water and climate change, simulating strait systems, oceans, spin glass phases, liquid crystals, serum transferring,  swollen gells, GO composites, metals with  glass-like structure, super hidrophobic polistren and, biofluids {yes, this was mine ;) }.

It was an incontrovertible experience for me that i could meet new studies in the field and spend nameable times with  physics authors.

Many thanks to organizing comitee (especially to Gülşen Evingür) and Sevtap Yıldız Özbek.

The website of the symposium is here.

Thesis

Prof. Khosrow Mottaghy commented on my study <3

Link

Computational Fluid Dynamics

Link

My Lab Drawings – II

A pulmonary artery. Actually this was the first step of my master thesis.