Category: Aorta

UCCVS 2022 Focus Valve Scholarship

I am very proud to have participated in 18th International Congress of Update Cardiology & Cardiovascular #Surgery with two research presentations, and ✨ to be awarded with FocusValve Scholarship

Best regards to #UCCVS committee members and our esteemed Prof. Öztekin Oto.

EVBio

A team I am honored to be involved in EVBio!
EVBio is a digital think tank formed by scientists from all disciplines related to vascular medicine, from molecular biology to scientific computing. Our mission is to imagine the future through disruptive basic and translational research. Our team works tirelessly to formulate one universal coherent theory for vascular disease and support all global efforts towards its conception and validation.

Our membership will increase soon!

Cardiovascular Engineering in Istanbul

We talked about cardiovascular engineering and its future.   I was honored to be a  guest in Future Research Institute. Many thnaks to Coskun Dolanbay.

Source

Pediatric Cardiac Imaging Session

SickKids

Liquid State Physics in Turkey

22. Liquid State Symposium (22. Sıvı Hal Senpozyumu) took place on 7th December 2018 in Piri Reis University.
It was very proud to be together with the physicist academics I knew and admired since my undergraduate years.
I find myself lucky to see the Prof. Zehra Akdeniz that I have always admired and exemplified. I could finally meet Prof. Nihat Berker who is not only a famous physicist but also an intellectual on comparative literature readings.

Thanks to Dr. Ozan Sarıyer and Dr. Gulsen Evingur for organizing this meeting.

Prof Pekkan presented biological flow researches of his lab, and I presented a sample case of a pediatric aortic blood flow comparison study which is done with the great help of Dr. Ece Salihoglu.

Virtual Physiological Human Conference 2018 / Zaragoza

Conference Web Link

8th World Congress of Biomechanics / Pekkan Lab

More

Utrecht Medical Center / TGA Symposium

Simulate the Physiology & Understand the Pathology

.

Computational Life is a young company which has the specialty on computational flow simulations and mathematical models for the medical technology field.

The validated software Digital Avatar Platform (DAP) of Computational Life is modeling human and animal body mathematically. It is testing physiological scenarios for drugs, medical devices and treatment methods.

Circulation system, cerebrospinal fluids, transport of pharmaceutical products throughout the body can be simulated for the human and animal body with DAP. It can also be modified due to the experiment.

They replied to me with a very warm and energetic mood when I wrote them. It is great that there are enthusiastic people in the medical technology field. I am sure that I will hear more about the news of Computational Life in the next days.

Thanks to Christian Contarino, Davide Chieco and Carlo Rivis for their innovative platform which brings a great help for clinicians, researchers, and engineers.

Please check their website for more information.

.

Double Aortic Arch

3D Intracardiac Models for Surgical Planning

In multidisciplinary areas, it is very important to be able to meet with the team who can work in harmony.

For his work on 3D intracardiac models on surgical planning,  Thanks to cardiovascular surgeon Dr. Okan Yildiz, we have been informed about and contributed to many pediatric cases and treatments since 2016.

3D Heart_IMAEH

Trando Med

Trando Med will attend MEDICA 2017 in the Dusseldorf Germany from 13-16 November 2017. The booth is Hall 13 Booth F 9-05

IFG26 – Statistical Physics Days

26th Statistical Physics Days were held in İzmir Institute of Technology.

During the program organization, Prof. Nejat Bulut’s dedication and careful attention to every detail was so amazing that it will be a very nice experience in my mind.

It was an honor to be among the successful physicist academicians and to listen to their work. It was also my chance that I had the opportunity to talk about my own practice and find the opportunity to discuss it with very precious professors.

K. Banu Kose

Aorta

Instagram

3D-Printed Artificial Heart Test / #ETH Zurich

A 3D Patient-Specific Aorta Model which is Segmented by The Visualisation Toolkit

Wilhelmina Children’s Hospital / Utrecht Sessions – The Netherlands

3 daags kindercardiologie TGA symposium

UMC Utrecht

Clinical Engineering Lecture in Beykent University

Clinical Engineering

Lecture

Beykent University Biomedical Engineering Event

I would like to thank the students of the biomedical department of Beykent University for inviting me to their event. It was nice to meet the curious and excited students.

Beykent Üniversitesi

Surgical Planning and 3D Printed Hearts

Alistair Phillips, MD, who is the Co-Chair for the American College of Cardiology, Surgeons Section tells about some of the impacts he has personally experienced using 3D printing in surgical settings as his participation in the 3DHEART program:

“The clinical trial is particularly exciting as it targets specific cases in which understanding of the anatomy will greatly enhance the surgical approach. A 3D printed replica of a patient’s heart will be created as part of the inclusion criteria to be in the study.Using 3D printing gave a better understanding of the Hybrid procedure, and allowed us to perform pulmonary valve replacement with a minimally invasive approach avoiding conventional method that required open-heart surgery. After coming to Cedars-Sinai we refined the pre-ventricular approach by utilizing a 3D printed models of patients’ hearts. We were able to simulate the implant into the right ventricular outflow tract.

Every surgeon is different. The education, experience, aptitudes, and attitude we bring to each equally nuanced and varied patient span an almost limitless spectrum and inform how we may utilize 3D printing for the benefit of our patients. The elegance of 3D printing is that it can create the individualized tools spanning this spectrum.

That said, however, what is not negotiable is the veracity of the models that we are receiving. Various materials and their corresponding colouring or rigidity may serve different functions in the hands of different surgeons, but ultimately we must have the utmost confidence in the fidelity of the models we are utilizing for pre-surgical planning. The more realistic the model is both in anatomical and textural preciousness will greatly enhance the application.

In all honesty, I would advise each hospital to start by really understanding the value proposition 3D printing offers across all specialities and, the culture of their institution. The best way to get answers to these very nebulous, complicated, nuanced directives is by retaining an outside vendor to provide as much of the services as possible, from the proverbial soup to nuts.

The excitement around the 3DHEART clinical trial is so great because it is the first organized, large-scale attempt to collect evidence of the efficacies of 3D printing in the practice of medicine and delivery of healthcare, not only in terms of optimized patient outcomes but also with respect to lower costs. If we can get reimbursement for 3D models, it is without a doubt a game-changer in terms of the practice of medicine, and a life-changer for many of our patients.”

Source

Flow Testing Dynamic Systems with 3D Printed Patient-Specific Heart Models

Without the 3D printed models, we wouldn’t have been able to come up with a way to do the procedure in advance.

—C. HUIE LIN, M.D
Adult congenital and interventional cardiologist.

3D Print Bureau of Texas has partnered with physicians at Houston Methodist Hospital to create cardiac models for applications such as assessing the size and attachment site of a right atrial malignancy. Accurate physical replications of patient anatomy can even undergo testing in a dynamic system such as replicating the severity of aortic stenosis using flow testing.

3D Print Bureau of Texas also worked with Houston Methodist DeBakey Heart and Vascular Center on a complex case involving a young patient born with a wide-open leaking pulmonary valve. The patient could not take blood transfusions and have been turned down by two medical centres concerned she would not make it through surgery.

With a 3D printed model of the patient’s heart, Lin devised a plan that required very little blood loss, which resulted in a successful operation for the little patient.

Source